independent and unofficial
Prince fan community
Welcome! Sign up or enter username and password to remember me
Forum jump
Forums > General Discussion > Catalase? It will extend your life.
« Previous topic  Next topic »
  New topic   Printable     (Log in to 'subscribe' to this topic)
Author

Tweet     Share

Message
Thread started 10/02/10 1:26pm

SUPRMAN

avatar

Catalase? It will extend your life.

THE one sure way to prolong an animal’s life is, paradoxically, to starve it. “Caloric restriction”, as it is known in the trade, works for everything from threadworms to mammals (people included, as far as can be ascertained without the luxury of controlled experiments). So it is no surprise that it also works for a group of small creatures known as rotifers. If that were the only result of Shugo Watabe’s experiments on the critters, at the University of Tokyo, it would scarcely be worth reporting. What makes this news is that the offspring of the rotifers in question also lived longer than normal. And that—the inheritance of an acquired characteristic—is quite startling.

Rotifers are unusual in that they often reproduce by parthenogenesis (some species, indeed, can reproduce only in this way). A parthenogenetic population is, by definition, all female and the result, give or take the odd mutation, is that a rotifer’s daughters are genetically identical to her. That makes rotifers convenient subjects for studies of the controversial idea that characteristics acquired during an individual’s life can be passed down the generations in ways that are independent of mutations in the DNA.

Dr Watabe and his colleagues first looked at whether caloric restriction does, indeed, work its magic on rotifers. It does. Without it, as they report in Functional Ecology, their animals lived for an average of 8.8 days. With it they lived for 13.5 days. The intriguing result came when they did the same thing with the rotifers’ offspring. The daughters of those rotifers which had been fed as much as they could eat lived for 9.5 days if treated likewise (not significantly different from their mothers) and 14.4 if put on short commons. Those born of calorie-restricted mothers lived for 12.7 and 16.8 days respectively. Something, then, is being passed on that is having an effect down the generations.

That something seems to be related to an enzyme called catalase. This enzyme degrades hydrogen peroxide, a highly reactive chemical that creates cellular damage of the sort associated with ageing. Dr Watabe found that the offspring of calorie-restricted mothers have more catalase than those of mothers who were fed without restriction.

The researchers also detected higher levels of the enzyme in the eggs of calorie-restricted mothers, so it could be that their offspring are simply endowed with the stuff. A more intriguing possibility, though, is that the relevant genes are affected by epigenesis, a process in which chemicals attached to the DNA control its activity. Epigenetic modifications are often retained when cells divide, and can sometimes be passed on to offspring.

If inherited epigenetic changes were causing daughter rotifers to produce more catalase, it would raise the question of whether a similar thing happens in other species and, if so, whether it might be induced artificially, without all the tedious business of a lifetime’s starvation. That would certainly be worth looking at. The search for an elixir of life has taken people to some strange places. Few, though, are stranger than rotifers.

http://www.economist.com/...d=17144833

I don't want you to think like me. I just want you to think.
  - E-mail - orgNote - Report post to moderator
Reply #1 posted 10/02/10 1:29pm

SUPRMAN

avatar

Catalase

September 2004 Molecule of the Month
by David S. Goodsell
Previous Features

Living with oxygen is dangerous. We rely on oxygen to power our cells, but oxygen is a reactive molecule that can cause serious problems if not carefully controlled. One of the dangers of oxygen is that it is easily converted into other reactive compounds. Inside our cells, electrons are continually shuttled from site to site by carrier molecules, such as carriers derived from riboflavin and niacin. If oxygen runs into one of these carrier molecules, the electron may be accidentally transferred to it. This converts oxygen into dangerous compounds such as superoxide radicals and hydrogen peroxide, which can attack the delicate sulfur atoms and metal ions in proteins. To make things even worse, free iron ions in the cell occasionally convert hydrogen peroxide into hydroxyl radicals. These deadly molecules attack and mutate DNA. One theory, still controversial, is that this type of oxidative damage accumulates over the years of our life, causing us to age.

Antioxidants to the Rescue

Fortunately, cells make a variety of antioxidant enzymes to fight the dangerous side-effects of life with oxygen. Two important players are superoxide dismutase, which converts superoxide radicals into hydrogen peroxide, and catalase, which converts hydrogen peroxide into water and oxygen gas. The importance of these enzymes is demonstrated by their prevalence, ranging from about 0.1% of the protein in an Escherichia coli cell to upwards of a quarter of the protein in susceptible cell types. These many catalase molecules patrol the cell, counteracting the steady production of hydrogen peroxide and keeping it at a safe level.

Better, Stronger, Faster

Catalases are some of the most efficient enzymes found in cells. Each catalase molecule can decompose millions of hydrogen peroxide molecules every second. Cow catalase and our own catalases use an iron ion to assist in this speedy reaction. The enzyme is composed of four identical subunits, each with its own active site buried deep inside. The iron ion is gripped at the center of a disk-shaped heme group. Catalases, since they must fight against reactive molecules, are also unusually stable enzymes. Notice how the four chains interweave, locking the entire complex into the proper shape.
http://www.pdb.org/pdb/st...b57_1.html


I don't want you to think like me. I just want you to think.
  - E-mail - orgNote - Report post to moderator
Reply #2 posted 10/03/10 2:37am

XxAxX

avatar

i've heard this too. periodic fasting is very good for humans, and other animals. it's hard though...

  - E-mail - orgNote - Report post to moderator
Reply #3 posted 10/03/10 3:49am

wildgoldenhone
y

The only time I fasted, I almost couldn't handle it.

I'm so not used to not having solid foods, but it was for a cleanse so that's the only reason why I did it.

  - E-mail - orgNote - Report post to moderator
  New topic   Printable     (Log in to 'subscribe' to this topic)
« Previous topic  Next topic »
Forums > General Discussion > Catalase? It will extend your life.