March 15, 2015
Ido Bachelet DNA nanobots summary with a couple of extra videos
cancer, disease, DNA, DNA computers, DNA origami, future, nanomedicine, programmable molecular nanotechnology, science
In a brief talk, Bachelet said DNA nanobots will soon be tried in a critically ill leukemia patient. The patient, who has been given roughly six months to live, will receive an injection of DNA nanobots designed to interact with and destroy leukemia cells—while causing virtually zero collateral damage in healthy tissue.
According to Bachelet, his team have successfully tested their method in cell cultures and animals and written two papers on the subject, one in Science and one in Nature.
Contemporary cancer therapies involving invasive surgery and blasts of drugs can be as painful and damaging to the body as the disease itself. If Bachelet's approach proves successful in humans, and is backed by more research in the coming years, the team’s work could signal a transformational moment in cancer treatment.
If this treatment works this will be a medical breakthrough and can be used for many other diseases by delivering drugs more effectively without causing side effects.
2012 Video with answers from George Church, Ido Bachelet and Shawn Douglas on the medical DNA double helix clamshell nanobucket nanobot
George Church indicates the smart DNA nanobot has applications beyond nanomedicine. Applications where there is any need for programmable and targeted release or interaction at the cellular or near molecular scale.
2014 Geek Time Presentation from Ido Bachelet
At the British Friends of...ty's event in Otto Uomo October 2014 Professor Ido Bachelet announced the beginning of the human treatment with nanomedicine. He indicates DNA nanobots can currently identify cells in humans with 12 different types of cancer tumors.
A human patient with late stage leukemia will be given DNA nanobot treatment. Without the DNA nanobot treatment the patient would be expected to die in the summer of 2015. Based upon animal trials they expect to remove the cancer within one month.
Within 1 or 2 years they hope to have spinal cord repair working in animals and then shortly thereafter in humans. This is working in tissue cultures.
Previously Ido Bachelet and Shawn Douglas have published work on DNA nanobots in the journal Nature and other respected science publications.
One Trillion 50 nanometer nanobots in a syringe will be injected into people to perform cellular surgery.
The DNA nanobots have been tuned to not cause an immune response.
They have been adjusted for different kinds of medical procedures. Procedures can be quick or ones that last many days.
Medicine or treatment released based upon molecular sensing - Only targeted cells are treated
Ido's daughter has a leg disease which requires frequent surgery. He is hoping his DNA nanobots will make the type of surgery she needs relatively trivial - a simple injection at a doctor's office.
We can control powerful drugs that were already developed
Effective drugs that were withdrawn from the market for excessive toxicity can be combined with DNA nanobots for effective delivery. The tiny molecular computers of the DNA nanobots can provide molecular selective control for powerful medicines that were already developed.
Using DNA origami and molecular programming, they are reality. These nanobots can seek and kill cancer cells, mimic social insect behaviors, carry out logical operators like a computer in a living animal, and they can be controlled from an Xbox. Ido Bachelet from the bio-design lab at Bar Ilan University explains this technology and how it will change medicine in the near future.
Ido Bachelet earned his Ph.D. from the Hebrew University in Jerusalem, and was a postdoctoral fellow at M.I.T. and Harvard University. He is currently an assistant professor in the Faculty of Life Sciences and the Nano-Center at Bar Ilan University, Israel, the founder of several biotech companies, and a composer of music for piano and molecules.
Researchers have injected...ckroaches. Because the nanobots are labelled with fluorescent markers, the researchers can follow them and analyse how different robot combinations affect where substances are delivered. The team says the accuracy of delivery and control of the nanobots is equivalent to a computer system.
This is the development of the vision of nanomedicine.
This is the realization of the power of DNA nanotechnology.
This is programmable dna nanotechnology.
The DNA nanotechnology cannot perform atomically precise chemistry (yet), but having control of the DNA combined with advanced synthetic biology and control of proteins and nanoparticles is clearly developing into very interesting capabilities.
According to Bachelet, his team have successfully tested their method in cell cultures and animals and written two papers on the subject, one in Science and one in Nature.
Contemporary cancer therapies involving invasive surgery and blasts of drugs can be as painful and damaging to the body as the disease itself. If Bachelet's approach proves successful in humans, and is backed by more research in the coming years, the team’s work could signal a transformational moment in cancer treatment.
If this treatment works this will be a medical breakthrough and can be used for many other diseases by delivering drugs more effectively without causing side effects.
2012 Video with answers from George Church, Ido Bachelet and Shawn Douglas on the medical DNA double helix clamshell nanobucket nanobot
George Church indicates the smart DNA nanobot has applications beyond nanomedicine. Applications where there is any need for programmable and targeted release or interaction at the cellular or near molecular scale.
2014 Geek Time Presentation from Ido Bachelet
At the British Friends of...ty's event in Otto Uomo October 2014 Professor Ido Bachelet announced the beginning of the human treatment with nanomedicine. He indicates DNA nanobots can currently identify cells in humans with 12 different types of cancer tumors.
A human patient with late stage leukemia will be given DNA nanobot treatment. Without the DNA nanobot treatment the patient would be expected to die in the summer of 2015. Based upon animal trials they expect to remove the cancer within one month.
Within 1 or 2 years they hope to have spinal cord repair working in animals and then shortly thereafter in humans. This is working in tissue cultures.
Previously Ido Bachelet and Shawn Douglas have published work on DNA nanobots in the journal Nature and other respected science publications.
One Trillion 50 nanometer nanobots in a syringe will be injected into people to perform cellular surgery.
The DNA nanobots have been tuned to not cause an immune response.
They have been adjusted for different kinds of medical procedures. Procedures can be quick or ones that last many days.
Medicine or treatment released based upon molecular sensing - Only targeted cells are treated
Ido's daughter has a leg disease which requires frequent surgery. He is hoping his DNA nanobots will make the type of surgery she needs relatively trivial - a simple injection at a doctor's office.
We can control powerful drugs that were already developed
Effective drugs that were withdrawn from the market for excessive toxicity can be combined with DNA nanobots for effective delivery. The tiny molecular computers of the DNA nanobots can provide molecular selective control for powerful medicines that were already developed.
Using DNA origami and molecular programming, they are reality. These nanobots can seek and kill cancer cells, mimic social insect behaviors, carry out logical operators like a computer in a living animal, and they can be controlled from an Xbox. Ido Bachelet from the bio-design lab at Bar Ilan University explains this technology and how it will change medicine in the near future.
Ido Bachelet earned his Ph.D. from the Hebrew University in Jerusalem, and was a postdoctoral fellow at M.I.T. and Harvard University. He is currently an assistant professor in the Faculty of Life Sciences and the Nano-Center at Bar Ilan University, Israel, the founder of several biotech companies, and a composer of music for piano and molecules.
Researchers have injected...ckroaches. Because the nanobots are labelled with fluorescent markers, the researchers can follow them and analyse how different robot combinations affect where substances are delivered. The team says the accuracy of delivery and control of the nanobots is equivalent to a computer system.
This is the development of the vision of nanomedicine.
This is the realization of the power of DNA nanotechnology.
This is programmable dna nanotechnology.
The DNA nanotechnology cannot perform atomically precise chemistry (yet), but having control of the DNA combined with advanced synthetic biology and control of proteins and nanoparticles is clearly developing into very interesting capabilities.